Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 82

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

New market opened up by advanced nuclear reactors (Chapter 3, 4, 5, 7)

Kamide, Hideki; Kawasaki, Nobuchika; Hayafune, Hiroki; Kubo, Shigenobu; Chikazawa, Yoshitaka; Maeda, Seiichiro; Sagayama, Yutaka; Nishihara, Tetsuo; Sumita, Junya; Shibata, Taiju; et al.

Jisedai Genshiro Ga Hiraku Atarashii Shijo; NSA/Commentaries, No.28, p.14 - 36, 2023/10

Developments of next generation nuclear reactors, e.g., Fast Reactor, and High Temperature Gas cooled Reactor, are in progress. They can contribute to markets of electricity and industrial heat utilization in the world including Japan. Here, current status of reactor developments in Japan and also situation in the world are summarized, especially for activities of Generation IV International Forum (GIF), developments of Fast Reactor and High Temperature Gas cooled Reactor in Japan, and SMR movements in the world.

Journal Articles

Concepts and basic designs of various nuclear fuels, 5; Fuels for high temperature gas-cooled reactor and molten salt reactor

Ueta, Shohei; Sasaki, Koei; Arita, Yuji*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(8), p.615 - 620, 2021/08

no abstracts in English

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Journal Articles

Study on plutonium burner high temperature gas-cooled reactor in Japan; Introduction scenario, reactor safety and fabrication tests of the 3S-TRISO fuel

Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.

Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02

 Times Cited Count:1 Percentile:11.8(Nuclear Science & Technology)

The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.

JAEA Reports

Code-B-2.5.2 for stress calculation for SiC-TRISO fuel particle

Aihara, Jun; Goto, Minoru; Ueta, Shohei; Tachibana, Yukio

JAEA-Data/Code 2019-018, 22 Pages, 2020/01

JAEA-Data-Code-2019-018.pdf:1.39MB

Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO$$_{2}$$ (PuO$$_{2}$$-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. On the other hand, we have developed Code-B-2.5.2 for prediction of pressure vessel failure probabilities of SiC-tri-isotropic (TRISO) coated fuel particles for HTGRs under operation by modification of an existing code, Code-B-2. The main purpose of modification is preparation of applying code for CFPs of Pu-burner HTGR. In this report, basic formulae are described.

Journal Articles

Behavior of high-burnup LWR-MOX fuel under a reactivity-initiated accident condition

Taniguchi, Yoshinori; Udagawa, Yutaka; Mihara, Takeshi; Amaya, Masaki; Kakiuchi, Kazuo

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.551 - 558, 2019/09

JAEA Reports

Flow separation at inlet causing transition and intermittency in circular pipe flow

Ogawa, Masuro*

JAEA-Technology 2019-010, 22 Pages, 2019/07

JAEA-Technology-2019-010.pdf:1.5MB

Transition phenomena from laminar to turbulent flow are roughly classified into three categories. Circular pipe flow of the third category is linearly stable against any small disturbance, despite that flow actually transitions and transitional flow exhibits intermittency. These are among major challenges that are yet to be resolved in fluid dynamics. Thus, author proposes hypothesis as follows; "Flow in a circular pipe transitions from laminar flow because of vortices released from separation bubble forming in vicinity of inlet of pipe, and transitional flow becomes intermittent because vortex-shedding is intermittent." Present hypothesis can easily explain why linear stability theory has not been able to predict transition in circular pipe flow, why circular pipe flow actually transitions, why transitional flow actually exhibits intermittency even due to small disturbance, and why numerical analysis has not been able to predict intermittency of transitional flow in circular pipe.

Journal Articles

Development of laser instrumentation devices for inner wall of high temperature piping system

Nishimura, Akihiko; Furusawa, Akinori; Takenaka, Yusuke*

AIP Conference Proceedings 2033, p.080002_1 - 080002_5, 2018/11

 Times Cited Count:0 Percentile:0.06(Green & Sustainable Science & Technology)

We developed a cpmpact laser maintenance device in order to access a 23 mm diameter for heat exchanger tubes of nuclear power plants. A laser instrumentation device was desighned and assembled to measure the corrosion depth at the inlet of heat exchanger tubes. This device can be applied for heat exchanger tubes in CSP where erosion or cracking might be caused by repetitive thermal induced stress.

JAEA Reports

Comparison between HTFP code and minory changed FORNAX-A code

Aihara, Jun; Ueta, Shohei; Goto, Minoru; Inaba, Yoshitomo; Shibata, Taiju; Ohashi, Hirofumi

JAEA-Technology 2018-002, 70 Pages, 2018/06

JAEA-Technology-2018-002.pdf:1.46MB

HTFP code is code for calculation of additional release amount of fission product (FP) from fuel rod in high temperature gas-cooled reactor (HTGR) after stop of fission. Minory changed Fornax-A code also can calculate that. Therefore, release behavior of Cs calculated with HTFP code was compared with that calculated with minory modified FORNAX-A code in this report. Release constants of Cs evaluated with minory modified FORNAX-A code are rather different from default values for HTFP code.

Journal Articles

Conceptual design of the iodine-sulfur process flowsheet with more than 50% thermal efficiency for hydrogen production

Kasahara, Seiji; Imai, Yoshiyuki; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; Yan, X.

Nuclear Engineering and Design, 329, p.213 - 222, 2018/04

 Times Cited Count:21 Percentile:90.78(Nuclear Science & Technology)

A conceptual design of a practical large scale plant of the thermochemical water splitting iodine-sulfur (IS) process flowsheet was carried out as a heat application of JAEA's commercial high temperature gas cooled reactor GTHTR300C plant design. Innovative techniques proposed by JAEA were applied for improvement of hydrogen production thermal efficiency; depressurized flash concentration H$$_{2}$$SO$$_{4}$$ using waste heat from Bunsen reaction, prevention of H$$_{2}$$SO$$_{4}$$ vaporization from a distillation column by introduction of H$$_{2}$$SO$$_{4}$$ solution from a flash bottom, and I$$_{2}$$ condensation heat recovery in an HI distillation column. Hydrogen of about 31,900 Nm$$^{3}$$/h would be produced by 170 MW heat from the GTHTR300C. A thermal efficiency of 50.2% would be achievable with incorporation of the innovative techniques and high performance HI concentration and decomposition components and heat exchangers expected in future R&D.

Journal Articles

R&D status in thermochemical water-splitting hydrogen production iodine-sulfur process at JAEA

Noguchi, Hiroki; Takegami, Hiroaki; Kasahara, Seiji; Tanaka, Nobuyuki; Kamiji, Yu; Iwatsuki, Jin; Aita, Hideki; Kubo, Shinji

Energy Procedia, 131, p.113 - 118, 2017/12

 Times Cited Count:22 Percentile:99.79(Energy & Fuels)

The IS process is the most deeply investigated thermochemical water-splitting hydrogen production cycle. It is in a process engineering stage in JAEA to use industrial materials for components. Important engineering tasks are verification of integrity of the total process and stability of hydrogen production in harsh environment. A test facility using corrosion-resistant materials was constructed. The hydrogen production ability was 100 L/h. Operation tests of each section were conducted to confirm basic functions of reactors and separators, etc. Then, a trial operation for integration of the sections was successfully conducted to produce hydrogen of about 10 L/h for 8 hours.

Journal Articles

IS process hydrogen production test for components and system made of industrial structural material, 2; H$$_{2}$$SO$$_{4}$$ decomposition, HI distillation, and HI decomposition section

Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.1029 - 1038, 2016/11

JAEA has been conducting R&D on the IS process for nuclear-powered hydrogen production. We have constructed a 100 NL/h-H$$_2$$-scale test apparatus made of industrial materials. At first, we investigated performance of components in this apparatus. In this paper, the test results of H$$_2$$SO$$_4$$ decomposition, HI distillation, and HI decomposition were shown. In the H$$_2$$SO$$_4$$ section, O$$_2$$ production rate is proportional to H$$_2$$SO$$_4$$ feed rate and SO$$_3$$ decomposition ratio was estimated about 80%. In HI distillation section, we confirmed to acquire a concentrated HI solution over azeotropic HI composition in the condenser. In HI decomposition section, H$$_2$$ could be produced stably by HI decomposer and decomposition ratio was about 18%. The H$$_2$$SO$$_4$$ decomposer, the HI distillation column, and the HI decomposer were workable. Based on the results added to that shown in Series I, we conducted a trial continuous operation and succeeded it for 8 hours.

Journal Articles

IS process hydrogen production test for components and system made of industrial structural material, 1; Bunsen and HI concentration section

Tanaka, Nobuyuki; Takegami, Hiroaki; Noguchi, Hiroki; Kamiji, Yu; Iwatsuki, Jin; Aita, Hideki; Kasahara, Seiji; Kubo, Shinji

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.1022 - 1028, 2016/11

Japan Atomic Energy Agency (JAEA) has manufactured 100 NL/h-H$$_2$$-scale hydrogen test apparatus. In advance to conduct the continuous operation, we investigated performance of the components in each section of the IS process. In this paper, the results of test of Bunsen and HI concentration sections was shown. In Bunsen reaction, section, we confirmed that outlet gas flow rate included no SO$$_{2}$$ gas, indicating that all the feed SO$$_{2}$$ gas was absorbed to the solution in the Bunsen reactor for the Bunsen reaction. On the basis of these results, we evaluated that Bunsen reactor was workable. In HI concentration section, HI concentration was conducted by EED stack. As a result, it can concentrate HI in HIx solution as theoretically predicted on the basis of the previous paper. Based on the results added to that shown in Series II, we have conducted a trial continuous operation and succeeded it for 8 hours.

Journal Articles

Visualization in response analyses for a nuclear power plant

Nakajima, Norihiro; Nishida, Akemi; Miyamura, Hiroko; Iigaki, Kazuhiko; Sawa, Kazuhiro

Kashika Joho Gakkai-Shi (USB Flash Drive), 36(Suppl.2), 4 Pages, 2016/10

Since nuclear power plants have dimensions approximately 100m$$^{3}$$ and their structures are an assembly made up of over 10 million components, it is not convenient to experimentally analyze its behavior under strong loads of earthquakes, due to the complexity and hugeness of plants. The proposed system performs numerical simulations to evaluate the behaviors of an assembly like a nuclear facility. The paper discusses how to carry out visual analysis for assembly such as nuclear power plants. In a result discussion, a numerical experiment was carried out with a numerical model of High Temperature engineering Test Reactor of Japan Atomic Energy Agency and its result was compared with observed data. A good corresponding among them was obtained as a structural analysis of an assembly by using visualization. As a conclusion, a visual analytics methodology for assembly is discussed.

JAEA Reports

Application of FORNAX-A

Aihara, Jun; Ueta, Shohei; Nishihara, Tetsuo

JAEA-Technology 2015-040, 32 Pages, 2016/02

JAEA-Technology-2015-040.pdf:0.83MB

Original FORNAX-A is a calculation code for amount of fission product (FP) released from fuel rods of pin-in-type high temperature gas-cooled reactors (HTGRs). This report is for explanation what calculations become possible with minor changed FORNAX-A.

Journal Articles

Assessment of amount and concentration of tritium in HTTR-IS system based on tritium behavior during high-temperature continuous operation of HTTR

Dipu, A. L.; Ohashi, Hirofumi; Hamamoto, Shimpei; Sato, Hiroyuki; Nishihara, Tetsuo

Annals of Nuclear Energy, 88, p.126 - 134, 2016/02

 Times Cited Count:5 Percentile:43.12(Nuclear Science & Technology)

The tritium concentration in the high temperature engineering test reactor (HTTR) was measured during the high temperature continuous operation for 50 days. The tritium concentration in the primary helium gas increased after startup and reached a maximum value. It then decreased slightly over the course during the normal operation phase. Decrease of concentration of tritium in primary helium gas during the normal operation phase could be attributed to the effect of tritium chemisorption on graphite. The tritium concentration in the secondary helium gas showed a peak value during the power ramp up phase. Afterwards, it decreased gradually at the end of normal power operation. It was assessed that the concentration and total quantity of tritium in the secondary helium cooling system for the HTTR-Iodine Sulfur (IS) system can be maintained below the regulatory limits, which means the hydrogen production plant can be exempt from the safety function of the nuclear facility.

Journal Articles

Study on operation scenario of tritium production for a fusion reactor using a high temperature gas-cooled reactor

Kawamoto, Yasuko*; Nakaya, Hiroyuki*; Matsuura, Hideaki*; Katayama, Kazunari*; Goto, Minoru; Nakagawa, Shigeaki

Fusion Science and Technology, 68(2), p.397 - 401, 2015/09

 Times Cited Count:1 Percentile:9.71(Nuclear Science & Technology)

To start up a fusion reactor, it is necessary to provide a sufficient amount of tritium from an external device. Herein, methods for supplying a fusion reactor with tritium are discussed. Use of a high temperature gas cooled reactor (HTGR) as a tritium production device has been proposed. So far, the analyses have been focused only on the operation in which fuel is periodically exchanged (batch) using the block type HTGR. In the pebble bed type HTGR, it is possible to design an operation that has no time loss for refueling. The pebble bed type HTGR (PBMR) and the block type HTGR (GTHTR300) are assumed as the calculation and comparison targets. Simulation is made using the continuous-energy Monte Carlo transport code MVPBURN. It is shown that the continuous operation using the pebble bed type HTGR has almost the same tritium productivity compared with the batch operation using the block type HGTR. The issues for pebble bed type HTGR as a tritium production device are discussed.

JAEA Reports

HTFP for calculation of amount of additionally released fission products from fuel rods of pin-in-block-type high temperature gas-cooled reactors during accident

Nomoto, Yasunobu; Aihara, Jun; Nakagawa, Shigeaki; Isaka, Kazuyoshi; Ohashi, Hirofumi

JAEA-Data/Code 2015-008, 39 Pages, 2015/06

JAEA-Data-Code-2015-008.pdf:10.32MB

HTFP is a calculation code for amount of additionally released fission product (FP) from fuel rods of pin-in-type according to transient of core temperature at the accident of high temperature gas-cooled reactors (HTGRs). This code analyzes FP release inventory from core according to the transient of core temperature at the accident as an input data and considering FP release rate from a fuel compact and a graphite sleeve and radioactive decay of FP. This report describes the outline of HTFP code and its input data. The computed solutions using the HTFP code were compared to those of HTCORE code, which was used for the design of the High Temperature Engineering Test Reactor (HTTR) to validate the analysis models of the HTFP code. The comparison of HTFP code results with HTCORE code results showed the good agreement.

Journal Articles

Numerical modeling assistance system in finite element analysis for the structure of an assembly

Nakajima, Norihiro; Nishida, Akemi; Kawakami, Yoshiaki; Suzuki, Yoshio; Sawa, Kazuhiro; Iigaki, Kazuhiko

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05

A numerical analysis controlling and managing system is implemented on K, which controls the modelling process and data treating, although the manager only controls a structural analysis by finite element method. The modeling process is described by the list of function ID and its procedures in a data base. The manager executes the process by order in the list for simulation procedures. The manager controls the intention of an analysis by changing the analytical process one to another. Experiments were carried out with static and dynamic analyses.

Journal Articles

Nuclear heat supply fluctuation test by non-nuclear heating using HTTR

Takada, Shoji; Sekita, Kenji; Nemoto, Takahiro; Honda, Yuki; Tochio, Daisuke; Inaba, Yoshitomo; Sato, Hiroyuki; Nakagawa, Shigeaki; Sawa, Kazuhiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

To investigate the safety design criteria of heat utilization system for the HTGRs, it is necessary to evaluate the effect of fluctuation of thermal load on the reactor. The nuclear heat supply fluctuation test by non-nuclear heating was carried out to simulate the nuclear heat supply test which is carried out in the nuclear powered operation. The test data is used to verify the numerical code to calculate the temperature of core bottom structure to carry out the safety evaluation of abnormal events in the heat utilization system. In the test, the helium gas temperature was heated up to 120$$^{circ}$$C. A sufficiently high temperature disturbance was imposed on the reactor inlet temperature. It was found that the response of temperatures of metallic components such as side shielding blocks was faster than those of graphite blocks in the core bottom structure, which was significantly affected by the heat capacities of components, the level of imposed disturbance and heat transfer performance.

82 (Records 1-20 displayed on this page)